特性
🌍 中文 支持普通话并使用多种中文数据集进行测试:aidatatang_200zh, magicdata, aishell3, biaobei, MozillaCommonVoice, data_aishell 等
🤩 PyTorch 适用于 pytorch,已在 1.9.0 版本(最新于 2021 年 8 月)中测试,GPU Tesla T4 和 GTX 2060
🌍 Windows + Linux 可在 Windows 操作系统和 linux 操作系统中运行(苹果系统M1版也有社区成功运行案例)
🤩 Easy & Awesome 仅需下载或新训练合成器(synthesizer)就有良好效果,复用预训练的编码器/声码器,或实时的HiFi-GAN作为vocoder
🌍 Webserver Ready 可伺服你的训练结果,供远程调用
进行中的工作
- GUI/客户端大升级与合并
-
初始化框架
./mkgui
(基于streamlit + fastapi)和 技术设计 -
增加 Voice Cloning and Conversion的演示页面
-
增加Voice Conversion的预处理preprocessing 和训练 training 页面
-
增加其他的的预处理preprocessing 和训练 training 页面
- 模型后端基于ESPnet2升级
开始
1. 安装要求
1.1 通用配置
按照原始存储库测试您是否已准备好所有环境。 运行工具箱(demo_toolbox.py)需要 Python 3.7 或更高版本 。
- 安装 PyTorch。
如果在用 pip 方式安装的时候出现
ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2)
这个错误可能是 python 版本过低,3.9 可以安装成功
- 安装 ffmpeg。
- 运行
pip install -r requirements.txt
来安装剩余的必要包。 - 安装 webrtcvad
pip install webrtcvad-wheels
。
1.2 M1芯片Mac环境配置(Inference Time)
以下环境按x86-64搭建,使用原生的
demo_toolbox.py
,可作为在不改代码情况下快速使用的workaround。如需使用M1芯片训练,因
demo_toolbox.py
依赖的PyQt5
不支持M1,则应按需修改代码,或者尝试使用web.py
。
-
安装
PyQt5
,参考这个链接- 用Rosetta打开Terminal,参考这个链接
- 用系统Python创建项目虚拟环境
/usr/bin/python3 -m venv /PathToMockingBird/venv source /PathToMockingBird/venv/bin/activate
- 升级pip并安装
PyQt5
pip install --upgrade pip pip install pyqt5
-
安装
pyworld
和ctc-segmentation
这里两个文件直接
pip install
的时候找不到wheel,尝试从c里build时找不到Python.h
报错-
安装
pyworld
brew install python
通过brew安装python时会自动安装Python.h
export CPLUS_INCLUDE_PATH=/opt/homebrew/Frameworks/Python.framework/Headers
对于M1,brew安装Python.h
到上述路径。把路径添加到环境变量里pip install pyworld
-
安装
ctc-segmentation
因上述方法没有成功,选择从github clone源码手动编译
git clone https://github.com/lumaku/ctc-segmentation.git
克隆到任意位置cd ctc-segmentation
source /PathToMockingBird/venv/bin/activate
假设一开始未开启,打开MockingBird项目的虚拟环境cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx
/usr/bin/arch -x86_64 python setup.py build
要注意明确用x86-64架构编译/usr/bin/arch -x86_64 python setup.py install --optimize=1 --skip-build
用x86-64架构安装
-
-
安装其他依赖
/usr/bin/arch -x86_64 pip install torch torchvision torchaudio
这里用pip安装PyTorch
,明确架构是x86pip install ffmpeg
安装ffmpegpip install -r requirements.txt
-
运行
参考这个链接 ,让项目跑在x86架构环境上
vim /PathToMockingBird/venv/bin/pythonM1
- 写入以下代码
#!/usr/bin/env zsh mydir=${0:a:h} /usr/bin/arch -x86_64 $mydir/python "$@"
chmod +x pythonM1
设为可执行文件- 如果使用PyCharm,则把Interpreter指向
pythonM1
,否则也可命令行运行/PathToMockingBird/venv/bin/pythonM1 demo_toolbox.py
2. 准备预训练模型
考虑训练您自己专属的模型或者下载社区他人训练好的模型:
近期创建了知乎专题 将不定期更新炼丹小技巧or心得,也欢迎提问
2.1 使用数据集自己训练encoder模型 (可选)
- 进行音频和梅尔频谱图预处理:
python encoder_preprocess.py <datasets_root>
使用-d {dataset}
指定数据集,支持 librispeech_other,voxceleb1,aidatatang_200zh,使用逗号分割处理多数据集。 - 训练encoder:
python encoder_train.py my_run <datasets_root>/SV2TTS/encoder
训练encoder使用了visdom。你可以加上
-no_visdom
禁用visdom,但是有可视化会更好。在单独的命令行/进程中运行”visdom”来启动visdom服务器。
2.2 使用数据集自己训练合成器模型(与2.3二选一)
- 下载 数据集并解压:确保您可以访问 train 文件夹中的所有音频文件(如.wav)
- 进行音频和梅尔频谱图预处理:
python pre.py <datasets_root> -d {dataset} -n {number}
可传入参数: -d {dataset}
指定数据集,支持 aidatatang_200zh, magicdata, aishell3, data_aishell, 不传默认为aidatatang_200zh-n {number}
指定并行数,CPU 11770k + 32GB实测10没有问题
假如你下载的
aidatatang_200zh
文件放在D盘,train
文件路径为D:\data\aidatatang_200zh\corpus\train
, 你的datasets_root
就是D:\data\
-
训练合成器:
python synthesizer_train.py mandarin <datasets_root>/SV2TTS/synthesizer
-
当您在训练文件夹 synthesizer/saved_models/ 中看到注意线显示和损失满足您的需要时,请转到
启动程序
一步。
数据统计
数据评估
本站ChatGPT大全提供的MockingBird都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由ChatGPT大全实际控制,在2023年3月19日 下午4:08收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,ChatGPT大全不承担任何责任。